三維3D封裝技術介紹
三維封裝技術利用了 SiC 功率器件垂直型的結構特點,將開關橋臂的下管直接疊在上管之上,消除了橋臂中點的多余布線,可將回路寄生電感降至1nH 以下。Vagnon于 2008 年即提出了利用金屬片直連的模塊單元,如圖10(a)所示,并基于此封裝制作了 Buck 變換器模塊。
實驗測試表明,該 3D 封裝模塊基本消除了共源極電感,而且輻射電磁場相比于傳統模塊大大減小,共模電流也得到了很好的抑制。類似的,文獻將 SiCMOSFET芯片嵌入 PCB 內部,形成如圖 10(b)所示的 3D 封裝形式。芯片表面首先經過鍍銅處理,再借由過孔沉銅工藝將芯片電極引出,最后使用PCB 層壓完成多層結構,圖 10(c)為實物模塊。得益于PCB 的母排結構,模塊回路電感僅有 0.25nH,并可同時實現門極的開爾文連接方式。
該封裝的功率密度極高,如何保證芯片溫度控制是一大難點,外層銅厚和表面熱對流系數對芯片散熱影響很大。除功率芯片之外,無源元件如磁芯,電容等均可通過適當的方式嵌入 PCB 當中以提高功率密度。
由上述新型結構可以看出,為充分發揮 SiC 器件的優勢,提高功率密度,消除金屬鍵合線連接是一種趨勢。通過采用各種新型結構,降低模塊回路寄生電感值,減小體積是推進電力電子走向高頻、高效、高功率密度的保證。
【閱讀提示】
以上為本公司一些經驗的累積,因工藝問題內容廣泛,沒有面面俱到,只對常見問題作分析,隨著電子產業的不斷更新換代,新的工藝問題也不斷出現,本公司自成立以來不斷的追求產品的創新,做到與時俱進,熟悉各種生產復雜工藝,能為各種客戶提供全方位的工藝、設備、材料的清洗解決方案支持。
【免責聲明】
1. 以上文章內容僅供讀者參閱,具體操作應咨詢技術工程師等;
2. 內容為作者個人觀點, 并不代表本網站贊同其觀點和對其真實性負責,本網站只提供參考并不構成投資及應用建議。本網站上部分文章為轉載,并不用于商業目的,如有涉及侵權等,請及時告知我們,我們會盡快處理;
3. 除了“轉載”之文章,本網站所刊原創內容之著作權屬于合明科技網站所有,未經本站之同意或授權,任何人不得以任何形式重制、轉載、散布、引用、變更、播送或出版該內容之全部或局部,亦不得有其他任何違反本站著作權之行為。“轉載”的文章若要轉載,請先取得原文出處和作者的同意授權;
4. 本網站擁有對此聲明的最終解釋權。